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A MAXIMUM PRINCIPLF: FOR OPTIMAL CONTROL 

PR0BI;EPIIS WITH FUNCTIONAL DIFFERENTIAL SYSTEMS 

by 

H. T. Banks 

In  t h i s  note we present a maxitrmm principle i n  in tegra l  form 

for  optimal control  problems with delay-different ia l  system equa- 

t ions which also contain delays i n  the control. Recent re la ted  

resu l t s  for  par t icu lar  cases of the systems discussed below may be 

-.found i n  [l], [ 5 ] ,  and [ 6 ] .  Vector matrix notation w i l l  be used and 

we s h a l l  not dist inguish between a vector and i t s  transpose. 

L e t  a, and to be fixed i n  R1 with -W < a. < to, I = 

[a,, a) be a bounded in te rva l  containing [ a  t 3, and put Is = 

(to,a). For x continuous on I and t i n  I?, the notation 

F (x (* ) , t )  w i l l  mean t h a t  F i s  a functional i n  x, depending on 

any or  a l l  of the values x(T), a. 5 7 S t. 

c lass  of absolutely continuous n - 1 vector functions on [ a  o, to] 

Let be a given convex subset of the  c lass  of all bounded Bore1 

0' 0 

- 
Q, w i l l  denote the 

Q 

measurable f'unctions u defined on I in to  Rr, and 7 be a 

given C1 manifold i n  R2n-1. 

minimizing 

The problem considered i s  t h a t  of 

over 5 X il X C(I ,Rn- l )  X I' subject t o  
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O I- P-l)  i s  an n-vector f = (f , f )  = (f  , f  ,..., 0 -  We assume t h a t  

functional of the form 

where the in tegra l  i s  a Lebesgue-Stieltjes integral .  Each 

h i (x(*) , t )  

gi(y,t) i s  c1 i n  (y,t) on R . me r x 1 vector function 

- 
is  assumed C1 i n  x and measurable i n  t, and each 

n 

q(t,s) i s  measurable i n  t,s, and of bounded var ia t ion i n  s on 

[ao,t]. It is also assumed tha t  the  var ia t ion of 7 i s  dominated 

by an L (Ir) function m. That is, v s(t,s) 5 m ( t )  f o r  

t E 1'. Finally, suppose t h a t  given x compact, $? C R , there  

ex is t s  an m i n  L1(Ir) satis- 

f i e s  

t 
s=a 

0 
1 

n-1 

Iv 

such t h a t  h = (h * ,h  ,..., hn-l) 

and 

. 
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for any $ E C(I ,Rn-I)  

sup ( 1  T(s) I : s E [ao, t]] 

with respect t o  x. 

and E C(I ,%),  where 11T11, = 

and dh i s  the Frgchet derivative of h 
- 

( f A 1  denotes the Euclidean norm of A. ) 
-* * -* * 

If (9 ,u  ,x t ) i s  a solution of the above problem, we de- ’ 1  -* 
f ine  the n x n - 1 matrix function 7 for t E It, s E [ao,t] 

bY 

-2+ 
where T~ i s  such t h a t  

(The existence of T* i s  guaranteed by the Rie‘sz theorem.) Then we 1 

have the  following necessary conditions: 
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* *-* * 
Theorem: L e t  @ ,u ,x  ,tl) be a solution t o  the  problem under the 

* 
assumptions above. I n  addition, suppose t h a t  t is  a Lebesgue 

point of f ( x  (-),u (*),t). 

vector function h ( t )  = (ho(t) ,x( t ) )  of bounded var ia t ion on 

[t t*] continuous at  tl, satisfying: 

1 
A * Then there ex is t s  a non-tr ivial  n- 

* 
0' 1 ' 

* 
(a) ho(t)  = constant SO, A ( t l )  + o 

* 
t, 

-. -* 
%here 7 i s  defined by (2). 

for a l l  u E R .  

( e )  The 2n-1 vector 

* 
t. 

f (Z* ( ), u* ( ), t;, . 

The proof of t h i s  theorem involves showing t h a t  the c lass  of 

functions y =  {F(x(*), t) :  F(ji(*), t)  = f f i (*) ,u(*) ,%) ,  U E n) 
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i s  absolutely quasiconvex [2] and then using necessary conditions 

fo r  extremals given i n  [2]. Absolute quasiconvexity i s  a general- 

izat ion of ideas due t o  Ganikrelidze [4], who first  obtained an 

in tegra l  maximum principle fo r  control problems with ordinary d i f -  

f e r en t i a l  system equations. 

principle i n  in tegra l  form for  the above described optimal control 

The inequality i n  (b) i s  a maximum 

problem. 

In  many par t icular  cases of the systems defined by (l), one 

can show tha t  the multipliers x are actually absolutely continuous 

;and sa t i s fy  (a) i n  different ia ted form. 

becomes the usual known multiplier equation fo r  systems with simple 

This different ia ted form 

time lags i n  the s t a t e  variables (see [l]). The t ransversal i ty  

conditions given i n  (C)  a lso can be reduced t o  a simpler form for  

many special  cases of (1). 

Included i n  (1) are many integro-differential  systems and 

time lag systems which appear i n  physical problems. For example, 

i f  one modifies s l i gh t ly  the biological population model formulated 

by Cooke i n  [ 3 ] ,  one obtains the system equation 

;r(t) = u( t - r )x( t - r )  + i3 (t)u(t-r-e (t))x(t-2-0 (t)) 

where x ( t )  i s  the  number i n  the population at  time t, u( t )  i s  

the b i r t h  rate a t  time t, and z i s  the gestation period. Systems 

with 



6 

which ar i se  i n  the study of reactor dynamics [TI, and with 

where 'iE = x ( t + 8 ) ,  0 e [-T,O], are a l so  spec,al cases of (1). t 

I .  
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